AP 2001 AI (1/2)

2.1	Eindrin	gen:	Etin	(Kuge	e) ~	Ekin	(Kug	el u.	K)	
										ber
	Wahren Reibun		110-	und	Verfor	mung				
						andel	tuna	gen	aus	
	mech.	energi	e ver	loren						
	Stauch	en:	Ekin	(Kug	el w	nd K) wire	l übe	. Span	narb
	in elas									
2										
12										0
	1 (M+	m) u	= 1	Ds	(Ener	gieer	h. be	im 8	tauch	en)
		mv)	1		$(mv)^2$			2 1	
	u = -	7+m	:	2 (M	+ m)	(M+n	1)2 =	2 0	5- 1	. 2
	(T)	1+m)	= 22	2	CM	+m) =	252	$\Rightarrow \forall^2$	_ (M+	m ²
									Lan	a R
	<-> V	= 7	1/2	(M+	m	(Beh.)		m	2
			40.4	-2 m	^				~)	
3.	1 V	= -	9,60 - 1	0-3 kg	· / 2	200,60	. 10	cg · 7	$0 \left(\frac{N}{m} \right)$	
				V			-			~ 7
	Y	= 2	,5. 10	5		29' Y	Eg	2 =	m &	= =
						0			70	
2.3.	2 46	= E	:'-E	=	Esp.	- EL	in (Ki	ige()		-
		= 3	Ds2	- 1	mv					
						h)2 -	1. 0	0.60 . 1	o'ng (25.6
										10
	ΔΕ	= 0	,056	t - 1	8,75	+ =-	137	M	etn !	Ques;
2	2 1/1		12 -	re 0	01.0		20			
2.3.							er 84a	ucheu	g	
	Tec =	Fa	$\Rightarrow D$	S = (m + 1	1)·a,	.ax			
			2C	7	On.	4.0.10)-2m		V	m
	=P (C = 7	n+M		200.6	0 - 10	3 kg	= 141	9 = 14	32

AP 2001 AI (2/2)

2.3.4	Die Bew. vom Aufprah bi	is zur max. Stauchun
	ist Teil einer harmon.	Schurngung:
	4t = 4 T ; T: Schwin	
	$\Delta t = \frac{1}{4} \cdot 2\pi \sqrt{\frac{m+M}{D}} = \frac{\pi}{2}$	70 kg·m 53/m
	$5t = 84 \text{ ms} = 84 \cdot 10^3 \text{ s}$	
2.4	Jett vouelastisch; Energi	LOCK LOO VOY
	M hat v2 = 0	Aber: Masse jett N
	$Mv_{1} + m(2v_{1} - v_{2})$	2 my
	U2 = M + m = -	M+m
	$u_2 = \frac{2 \cdot 0,60 \cdot 10^{-3} \text{kg} \cdot 2,5 \cdot 10^{-3} \text{kg}}{200,60 \cdot 10^{-3} \text{kg}}$	M.S. = 15 2 = 1
	In Energieansak von 2	.2
	$\frac{1}{2}Mu_2^2 = \frac{1}{2}Ds^2 \iff S =$	$\frac{Mu_2}{D}$
	$S = \begin{cases} 0.200 \text{ kg} \cdot (1.5 \text{ m})^2 \\ 70 \text{ kg} \cdot \text{s}^2 \end{cases} = 0.000 \text{ kg}$	0802 m = 8,0 cm